This section describes the field and laboratory methods used to implement the Monitoring Program, which includes precipitation and flow monitoring, stormwater sampling, and laboratory analyses.

3.1 PRECIPITATION AND FLOW MEASUREMENT

3.1.1 Precipitation Monitoring

Every monitoring station has a minimum of one automatic tipping bucket (intensity measuring) rain gauge located nearby or within the tributary watershed. Large watersheds may use multiple rain gages to accurately characterize the rainfall. The Los Angeles County Flood Control District (LACFCD) operates various automatic rain gauges throughout Los Angeles County. Existing gauges near the monitored watersheds are also utilized in calculating stormwater runoff and are essential to develop runoff characteristics for these watersheds.

3.1.2 Flow Monitoring

Flow monitoring equipment is used to trigger the automated samplers because the Monitoring Program requires flow-weighted composites for many constituents. Flows are determined from water elevation measurements as described below.

An open channel's water elevation is measured by the stage monitoring equipment, and the flow rate is derived from a previously established site specific rating table or calculated with an equation such as Manning's. The LACFCD uses rating tables generated from open channel cross sections analysis and upstream/downstream flow characteristics. The rating tables are modified if it is demonstrated in the field through stream velocity measurements that calculated table values are incorrect. Previous stormwater flow measurement efforts indicated that all stations require multiple storm events to gather the data necessary for calibration of the measurement devices.

The automatic samplers utilize pressure transducers as the stage measurement device. However, pressure transducers are only accurate as flow measurement devices in open channel flow regimes.

3.2 STORMWATER SAMPLING

3.2.1 Wet Weather Sample Collection Methods

Grab and composite sample collection methods, defined below, were used during the 2008-2009 storm season.

- Grab Sample a discrete, individual sample taken within a short period of time, usually less than 15 minutes. This method is used to collect samples for constituents that have very short holding times and specific collection or preservation needs.
- Composite Sample a mixed or combined sample created by combining a series of discrete samples (aliquots) of specific volume, collected at specific flow-volume intervals. Composite sampling is ideally conducted over the duration of the storm event.

Grab samples were collected during the initial portion of the storm event (on the rising limb of the hydrograph) and taken directly to the laboratory.

Most flow-weighted composite storm samples were obtained using an automated sampler to collect samples at flow-paced intervals. The Santa Clara River Station is not automated, so composite samples were obtained by sampling discretely every twenty minutes for the first three hours of the storm, and then mixing the discrete samples in the laboratory in proportion to the measured flow rates.

The automated samplers were programmed during the storm season to start automatically when the water level in the channel or storm drain exceeded a minimum predetermined level above the current stage. This practice was developed based upon years of experience of monitoring in local watersheds. It was particularly useful when samplers needed to be reset to capture storms occurring a little over 24 hours apart and it was not possible to wait for flows to return to a dry weather stage level.

A sample was collected each time a set volume of water had passed the monitoring point (this volume is referred to as the pacing volume or trigger volume). The samples were stored in glass containers within the sampler. An eight-liter sample size minimum was required to conduct the necessary laboratory analyses for all the constituents. The automated sampler was deactivated by field personnel within 48-hours after the end of each storm event. This technique proved practical for storms occurring a little over 24 hours apart.

Samples were retrieved from the automated samplers as soon as possible to meet laboratory analysis holding time requirements. As samples were collected, rainfall and runoff data were logged and stored for transfer to the office.

3.2.2 Dry Weather Sample Collection Methods

For dry weather sampling, all methods are the same as for wet weather sampling, except samples are collected as time-weighted composites over a 24-hour period and auto samplers are programmed to start at a lower stage.

3.2.3 Field Quality Assurance/Quality Control Plan

Quality Assurance/Quality Control (QA/QC) is an essential component of the monitoring program. *Evaluation of Analytes and QA/QC Specifications for Monitoring Program* (Woodward-Clyde, 1996a) describes the procedures used for bottle labeling, chain-of-custody tracking, sampler equipment checkout and setup, sample collection, field blanks to assess field contamination, field duplicate samples, and transportation to the laboratory.

An important part of the QA/QC Plan is the continued education of all field personnel. Field personnel were trained from the onset and informed about new information on stormwater sampling techniques on a continuing basis. Field personnel also evaluate the field activities required by the QA/QC Plan, and the Plan is updated if necessary. Accurate data was obtained by properly performing monitoring station set up, water sample collection, sample transport, and laboratory analyses.

Bottle Preparation

A minimum of three sets of bottles were prepared for each monitoring station so that change outs could be made quickly between closely occurring storms. Bottle labels contained the following information:

- LACFCD's Field Sample Identification (FSID) Number
- Station (Site) Number
- Station (Site) Name
- Laboratory Analysis Requested
- Date (Written at time of sampling)

Bottles were cleaned at the laboratory prior to use, then they were labeled and stored in sets. Each station was provided with the same number, types, and volumes of bottles for each rotation unless special grab samples were required. Clean composite sample bottles were placed in the automated sampler when samples were collected. This practice ensured readiness for the next storm event. All bottles currently not in use were stored and later transported in plastic ice chests. Composite sample bottles were limited to a maximum of 2 $\frac{1}{2}$ gallons each, to ensure ease of handling.

Chain-of-Custody Procedure

Chain-of-custody forms were completed to ensure and document sample integrity. These procedures establish a written record which tracks sample possession from collection through analysis. These forms contained the following information:

- LACFCD's Field Sample Identification (FSID) Number
- Station (Site) Number
- Station (Site) Name
- Laboratory Analysis Requested
- Date (Written at time of sampling)
- Time (Written at time of sampling)
- Number of Bottles
- Temperature of Sample
- Sampler(s), Lab and Sampler/Courier Signatures, and Time(s) sample(s) changed possession (Completed upon sample transfer(s))

Field Setup Procedures

All automated field sampling locations were fixed sites, with the sampler placed on a public road or flood control right-of-way. Field staff prepared the sampler to collect the next set of samples (either in storm mode or in dry weather mode) after collecting the current samples. Inspection of visible hoses and cables was performed to ensure proper working conditions according to the site design. Inspection of the strainer, pressure transducer, and auxiliary pump was performed during daylight hours in non-storm conditions.

The automated samplers were checked at the beginning of the storm (during grab sample collection) to ensure proper working condition and to see if flow composite samples were being collected properly. Dry weather collection techniques were similar, with grab and 24 hour composite samples being collected.

Bottles were collected after each event and packed with ice and foam insulation inside individually marked ice chests. Chain-of-custody forms were completed by field staff before transportation of the samples to the laboratory. Under no circumstances were samples removed from the ice chest during transportation from the field to the laboratory.

Field Quality Assurance/Quality Control

Duplicate grab samples were analyzed to assess sample representativeness, accuracy, and precision. The monitoring program included field duplicates to assess the precision of laboratory results. A field duplicate, the origin of which was unknown to the laboratory, was collected at one site for each sampling event. This methodology for assessing laboratory testing procedures provided data to measure the precision and accuracy of the laboratory results. Field blanks were collected in order to assess sampling techniques for grab sampling.

3.3 LABORATORY ANALYSES

The County Department of Agricultural Commissioner/Weights and Measures (ACWM) Environmental Toxicology Laboratory (ACWM Lab) provides water quality laboratory and related services to LACFCD. The ACWM Lab is state-certified to perform the water quality analyses. The ACWM Lab maintains a laboratory analysis program that includes Quality Assurance and Quality Control protocols consistent with the objectives of the monitoring program required by the Permit.

The ACWM subcontracts toxicity testing with Aquatic Bioassay Consulting Laboratories, Inc., of Ventura, California, Nautilus Environmental of San Diego, California and ToxScan, Inc./Kinnetic Laboratories, Inc. of Santa Cruz, California. These laboratories are accredited by the State of California's Environmental Laboratory Accreditation Program for Whole Effluent Toxicity of Wastewater testing, as well as for other types of analysis.

3.3.1 Chemical and Biological Analysis

The Municipal Storm Water Permit specifies the suite of analyses and associated minimum levels (MLs) for samples collected at mass emission stations. All the

laboratory methods used for analyzing stormwater samples are approved by the California Department of Health Services and conform to EPA approved methods.

Table 3-1 shows all the constituents monitored during the 2008-09 reporting period, including constituents analyzed with composite or grab samples. The table lists the method number, the PQL (which is the same as ML as defined in the Municipal Storm Water Permit), the method detection limit, and other relevant information for each constituent.

The Municipal Storm Water Permit generally defines method detection limit and ML (i.e., PQL) as follows:

- Method detection limit means the minimum concentration of a substance that can be measured and reported with 99 percent confidence that the analyte concentration is greater than zero.
- ML means the concentration at which the entire analytical system must give a recognizable signal and acceptable calibration point.
- The ML is the concentration in a sample that is equivalent to the concentration of the lowest calibration standard analyzed by a specific analytical procedure, assuming that all the method specified sample weights, volumes, and processing steps have been followed.

Data submitted by ACWM Lab to Public Works included data qualifiers as summarized in the table below. Certain data qualifiers led to censoring of the reported result by replacing it with the value -99. The table below summarizes all of the qualifiers that were associated with -99 values.

Qualifier		ı		Nutri	Elements, itrients, ventional	
Acronym	Qualifier	2006-2009	2008-2009	2006-2009	2008-2009	
BMDL	Below Method Detection Limit	25995	9676	814	655	
BRL	Below Reporting Limit	0	0	125	111	
NA	Not Available	0	0	262	0	
ND	Not Detected (same as BMDL)	0	0	3930	882	
QNS	Quantity Not Sufficient	406	212	13	11	

For organic constituents, the vast majority of -99 values were associated with the "BMDL" qualifier. A smaller number of the organic constituents were associated with the QNS data qualifier. Samples qualified as BMDL will count towards the requirement that 75% of the first 48 samples collected be non-detect in order to reduce sampling frequency. Samples qualified as QNS would not count towards this requirement, as they were not analyzed.

For trace elements, nutrients, and conventional constituents, the majority of the data qualifiers were either ND or BMDL. Prior to 2008, some samples were qualified as "NA." qualified as BRL, and a few were qualified as QNS.

For the purposes of this analysis, data censored with -99 values were only used in the comparison to water quality objectives. The -99 values are not plotted on the trends charts. The -99 values are counted as "measured but not detected" for the summary of exceedances. The -99 values counted as "measured but not detected" includes some (111) samples that were censored with -99 values because they were BRL. All values censored with -99 were omitted from correlation analysis.

On review of the data submitted, it was also noted that many samples having uncensored values still had qualifiers, including "BMDL" and "BRL." In the interest of timely report completion, these were accepted as valid results for the purposes of analysis. Qualified data that show exceedances are noted in the narrative describing comparison to water quality objectives.

The primary objective of the laboratory QA/QC program is to ensure that the analyses are scientifically valid, defensible, and of known precision and accuracy. ACWM Lab maintains QA/QC procedures (as described in their Quality Assurance Manual) in accordance with requirements of the California Department of Health Services. ACWM Lab standard operation procedures include method validation, equipment calibration, preventive maintenance, data validation procedures, assessment of accuracy and precision, corrective actions, and performance and system audits.

ACWM Lab conducted the QA/QC review and data validation for the 2008-2009 monitoring data, and the QA/QC documentation is available within the ACWM Lab files. The validated data as provided by the ACWM Lab were used for data analysis and interpretation with no further QA/QC review.

3.3.2 Toxicity Analysis

Toxicity analysis was performed by the following methods:

- Ceriodaphnia dubia seven-day (chronic) survival and reproduction tests.
- Strongylocentrotus purpuratus (sea urchin) chronic fertilization test.

The tests were performed using multiple sample concentrations ranging from 100 percent to 0 percent (N-control), such that the desired toxicity endpoints could be adequately observed. Based on the endpoints of reproduction and survival, the No Observed Effect Concentrations, Inhibitory Concentrations, and Effective Concentrations were calculated and reported for each test. These tests were conducted under guidelines prescribed in Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to West Coast Marine and Estuarine Organisms (EPA, 1995).

Water quality measurements (temperature, pH, dissolved oxygen, hardness, conductivity, and alkalinity) were recorded for each sample at the beginning and throughout each test. These measurements were performed to ensure there were no large variations in water quality, which can affect the accuracy of the toxicity tests.